

Computer-Aided System for Breast Cancer Lesion Segmentation and Classification Using Ultrasound Images.

Saied Salem, Ahmed Mostafa, Yasien E. Ghalwash, Manar N. Mahmoud, Ahmed F. Elnokrashy, Ahmed M. Mahmoud

The 11th IEEE International Conference on E-Health and Bioengineering - EHB 2023 Grigore T. Popa University of Medicine and Pharmacy Iasi, November 9-10, 2023, Bucharest, Romania

Table Of Contents

01 INTRODUCTION 04 RESULTS

02 PREVIOUS WORK 05 DISCUSSION

03 METHODS 06 ACKNOWLEDGMENT

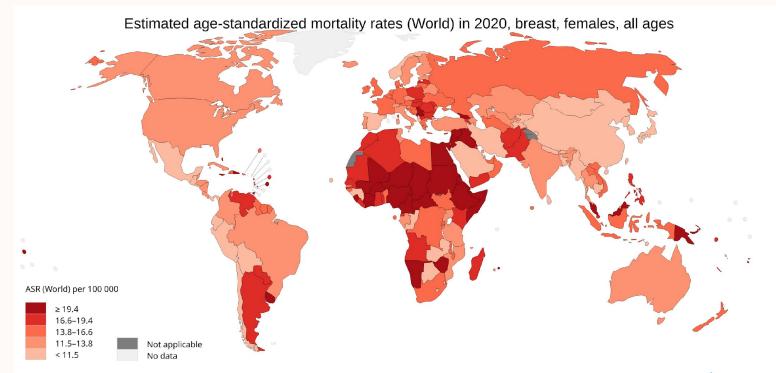
Introduction

01

Incidence, Prevalence & Mortality

- Breast Cancer Was Ranked 1st in Incidence Rates & Prevalence Among Other Cancer Types In The World in 2020 By WHO
- Breast Cancer Also Was Ranked 5th in Mortality Rates Among Other Cancer Types In The World in 2020 By WHO

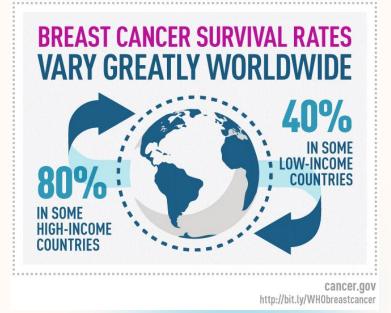
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries - Sung - 2021 - CA: A Cancer Journal for Clinicians - Wiley Online Library



All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Worid Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2020 Map production: IARC (http://gco.larc.fr/today) World Health Organization

Problem



Although breast cancer
 incidence rate is higher in
 developed countries, the
 problem lies within developing
 countries where the mortality
 rates are higher than usual,
 which means less treatment or
 lack of resources for it.

Objective

- Develop a CAD for healthcare providers to improve the screening and diagnosis of breast cancer using ultrasound imaging.
- Decrease the need for unnecessary biopsies and/or x-ray imaging methods.

Why Ultrasound?

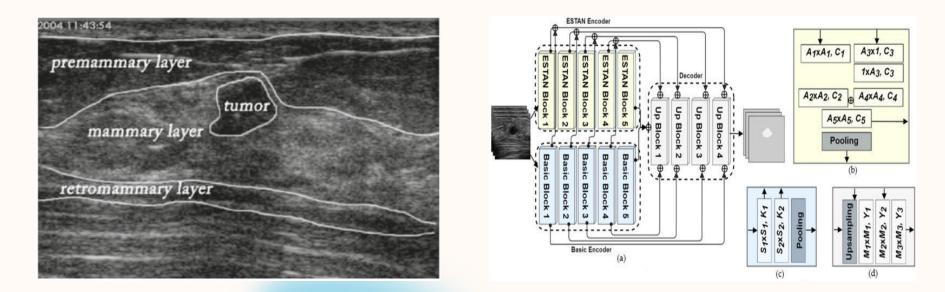
Although **mammogram** is the **gold standard** for diagnosing breast cancer, **ultrasound** is still preferred in some cases because

- It is cost effective
- No lonizing Radiation (Less Risk)
- Portable & Flexible
- Preferred For Women With Dense Breast
- Ultrasound (B-mode) is a Viable Option For Developing Countries

Previous Work

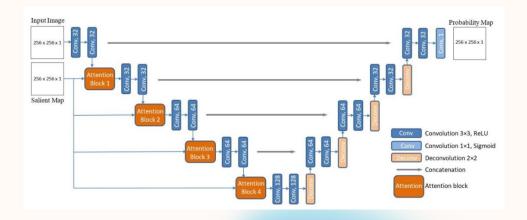
02

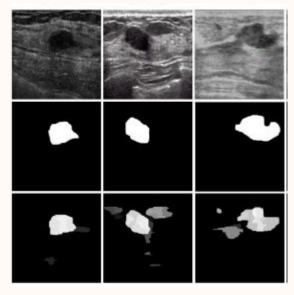
Enhanced Small Tumor-Aware Network (ESTAN) (Shareef et al. 2022)



This **segmentation** approach achieved on average **81.5 dice score** on **725 ultrasound images**

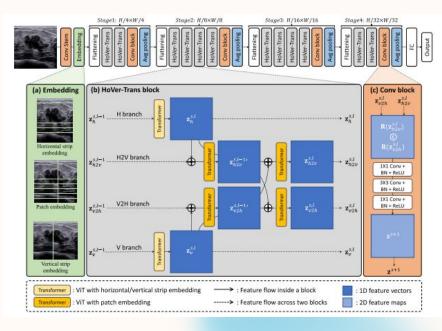
Attention-Enriched Deep Learning Model for Breast Tumor Segmentation (Vakanski et al. 2020)

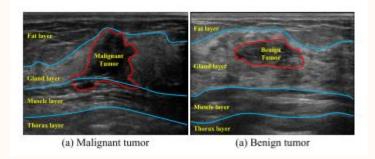




This **segmentation** approach achieved on average **90.5 dice score** on **510 ultrasound images**

HoVer-Trans: Anatomy-aware HoVer-Transformer for ROI-free Breast Cancer Diagnosis in Ultrasound Images (Mo. et al. 2022)





This classification approach achieved 92.4% AUC on 2405 Ultrasound Images

Methods

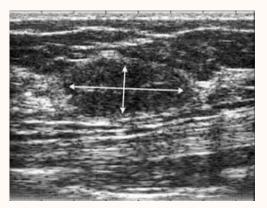
03

Datasets

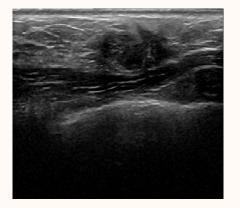
Data	Acq Year	Patients	Transducers	Device	No. Of Samples
<u>Baheya</u>	2018	600 (25-75)	1–5 MHz ML6-15-D Matrix linear probe	GE LOGIQ E9	780
UDIAT	2012	163	8.5 MHz 17L5 HD linear array probe	Siemens ACUSON Sequoia C512	163
OASBUD	2013-2015	78	5-14 MHz L14-5/38 linear array probe	Ultrasonix SonixTouch	200
GDPH & SYSUCC	2022	1202	Multiple Linear Probes	Hitachi Ascendus Mindray DC-80 Toshiba Aplio 500 Supersonic Aixplorer	2405
Own Dataset	_	-	3 – 12 MHz L3–12a Linear Array Probe	Samsung WS80A	2771
Total	-	> 2043	-	-	6319

Examples From Datasets

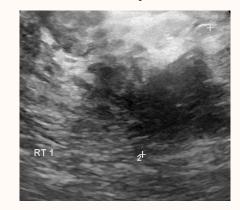
OSABUD



UDIAT



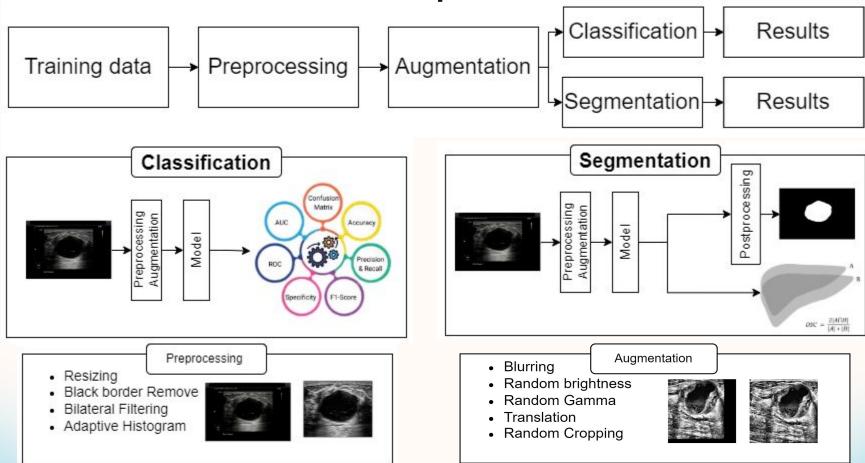
Baheya



GDPH & SYSUCC

GDPH & SYSUCC

AI Pipeline



Classification Model

Architecture

We are using the new EfficientNet architecture specifically (Efficient-Net V2-B0) & applied transfer learning

Loss Function & Schedule

Cross Entropy Loss & Learning Rate Schedule Used Decaying Cyclic Learning Rate

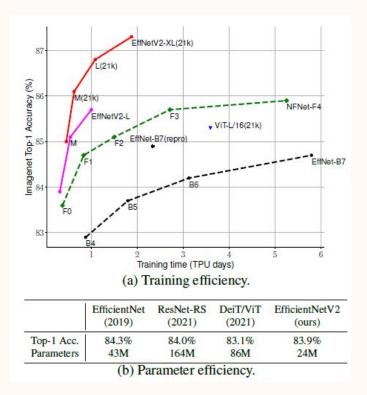
Data Used

2804 Samples Were Used (1170 Benign-1531 Malignant-103 Normal) Using: BUSI, UDIAT, OASBUD, GDPH, and SYSUCC

Splitting & Epochs

We Used **80% Training – 10%** Validation – 10% Testing & Used Early Stopping (Model Trained For 14 Epochs)

Classification Model



Segmentation Model

Architecture

We are using **Attention U-Net** Architecture

Loss Function & Schedule

We are using a recently discovered loss function which is **Log Cosh Loss & Combo Loss** & Learning Rate Schedule Used **Cosine Annealing**

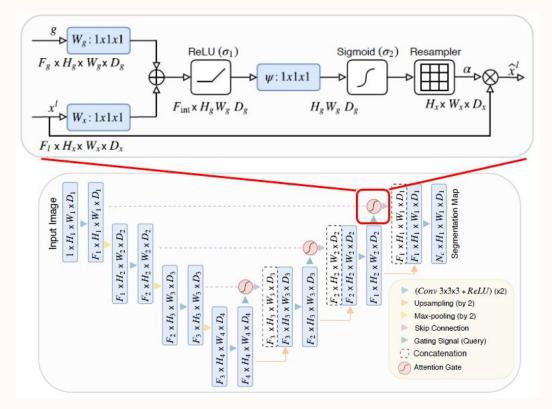
Data Used

6319 Samples Were Used For Segmentation **Using**: BUSI, Baheya, UDIAT, OASBUD, GDPH, SYSUCC and our own dataset

Splitting & Epochs

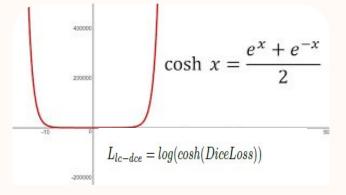
We Used 80% Training – 10% Validation – 10% Testing & Model Trained For 75 Epochs

Segmentation Model



Loss Functions

$$L_{m-bce} = -\frac{1}{N} \sum_{i} \beta(y - \log(\hat{y})) + (1 - \beta)(1 - y)\log(1 - \hat{y})$$
(17)
$$CL(y, \hat{y}) = \alpha L_{m-bce} - (1 - \alpha)DL(y, \hat{y})$$
(18)



Combo Loss

Log Cosh Loss

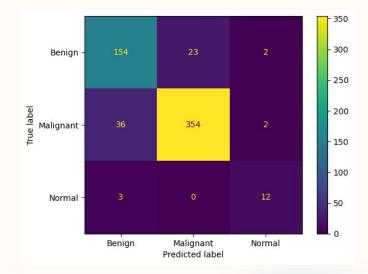
Classification Results on All Datasets

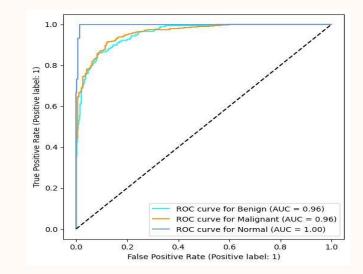
Data	Accuracy	F1 Score	Sensitivity	Specificity	AUC
VGG16	76	0.76	63.6	82.8	90.1
MobileNet	83	0.827	70.6	88.0	94.75
DenseNet121	89	0.89	89.13	92.5	97
EfficientNetB0	86	0.862	79.41	91.2	96.5
EfficientNetV2-B0	89	0.87	89.0	92.0	96

EfficientNetV2-B0 Results on Each Dataset

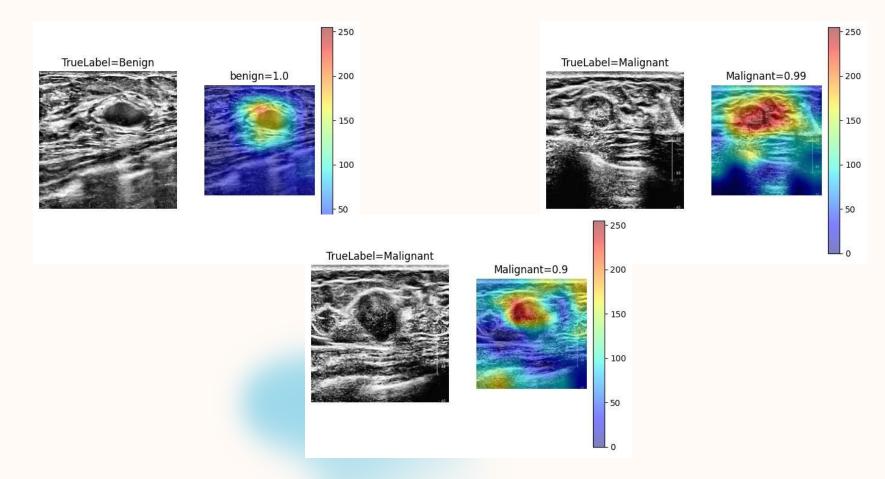
Data	Accuracy	F1 Score	Sensitivity	Specificity	AUC
BUSI	86	0.858	86.7	92.0	93.75
UDIAT	98	0.98	95.0	96.4	98
OASBUD	71	0.705	69.0	68.5	81.7
GDPH&SYSUCC	90	0.90	88.5	88.3	96

EfficientNetV2-B0 Test Metrics





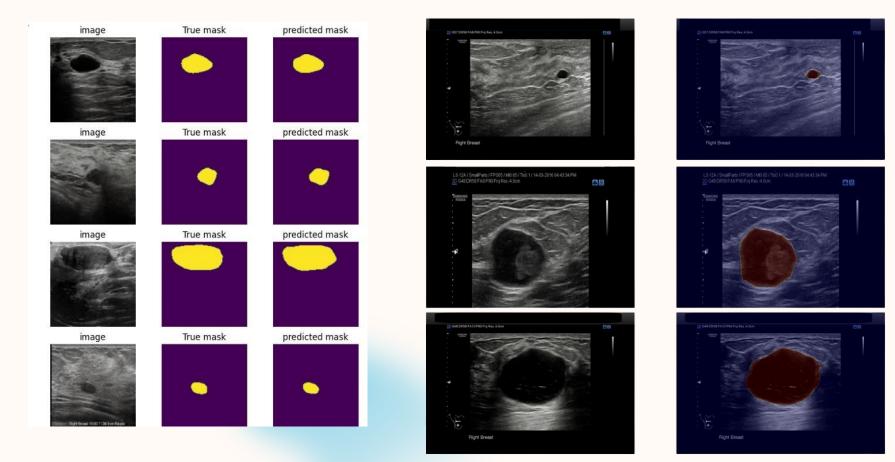
GradCam On Test Data



Segmentation Results

Model	Loss	Val Dice Score	Test Dice Score
Unet+Res Net34 Backbone	Log Cosh Dice Loss	0.84	0.85
Unet+Res Net50 Backbone	Combo Loss	0.84	0.83
Attention Unet	Combo Loss	0.85	0.84
Attention Unet	Log Cosh Dice Loss	0.86	0.85

Segmentation Output On Test Data



Discussion

05

Contributions

- Our study focus on diverse datasets forms the cornerstone of our success in achieving high-performance results
- Achieved High Results using Efficient–Net V2 for classification of BUS images.
- Compared two loss functions for breast lesion segmentation, utilizing U-net architecture with various backbones and Attention U-net.

Limitations

High Variability

US Images are known to have high variability meaning benign might look like malignant , if we don't focus on all details

Requires Expertise

Some times physicians have **hard time deciding** whether a lesion is benign or not , that is why **follow up** is needed or **second opinion**

Full Of Noises

US Images are full of different types of noises, the most dominant one is **speckle noise which hides important acoustic features**

Limitations

UI Components

From Our Experiments, we found out that **UI components** & **Black Borders** if allowed into AI Model it will **affect its decision**.

Class Imbalance

As we discussed before, the data distribution is highly imbalanced so it will affect the generalizability of the classification model

Solution Example

Image with Blackborder



Image After Blackborder Removal

ACKNOWLEDGMENT

06

We Would Like To Express Our Gratitude to Astute Imaging For Providing The Technical & Research Support Throughout This Work

Thank You